
 
Abstract - Path planning problem plays an important role in 

mobile robot works. The robotic systems use intelligence 
algorithms to plan the path of the robot from one point to the other 
point. The main goal of path planning is to find the allowable 
movements of a robot in an environment with obstacles. These 
motions involve a path free of collision from the start position to 
the target position. In this study, Gray Wolf Optimization (GWO) 
algorithm was adapted to solve robot path planning problem. 
GWO algorithm imitates the hunting behavior and social 
leadership of gray wolves in nature. The leadership hierarchy 
consists of four grey wolf groups: alpha, beta, delta, and omega 
wolves. This algorithm comprises hunting mechanism with three 
stages: searching for prey, encircling prey, and attacking prey. In 
the test simulations of the robot path planning, we used a map with 
three circular obstacles. GWO algorithm was adapted to this 
problem. While finding the candidate solutions in path planning, 
three coordinate points are used between start and target points. 
For each iteration, these coordinate points are updated by GWO 
algorithm. If the solution point is in the obstacle zone, then 
violation is added to the cost function. The performance of GWO  
algorithm was evaluated with those of meta-heuristic algorithms 
for solving the robot path planning problem. The results obtained 
by GWO algorithm show that the optimal path is found for used 
test map. 
 

Keywords - Robot Path Planning, Meta-Heuristic Algorithm, 
Gray Wolf Optimizer. 

I. INTRODUCTION 
n last three decades, meta-heuristic algorithms have become 
very popular for the optimization problems. Meta-heuristic 

algorithms are inspired by the evolution concepts or the physics 
rules or the social behavior of swarms, flocks of animals in 
nature Meta-heuristic algorithms are classified into, physical 
based algorithms, evolutionary based algorithms swarm 
intelligence algorithms, bio-inspired algorithms and other 
nature-inspired algorithms [1][2]. In the physical based 
algorithms, solving the optimization problem begins with a 
single solution and it is updated by physical equations at each 
iteration. Tabu Search algorithm (TS) [3][4], Simulated  
Annealing algorithm (SA) [5][6] can be given as examples to 
physical based algorithms. Genetic algorithm (GA) [3][4] and 
Differential Evolution (DE) algorithm [9]–[11] are the well 
known examples of the evolutionary based meta-heuristic  
algorithms. Some of swarm intelligence algorithms include 
Particle Swarm Optimization (PSO) algorithm by Kennedy & 
Eberhart [12][13], Artificial Bee Colony (ABC) algorithm by 
Karaboga [14][15], Ant Colony Optimization (ACO) algorithm 

by Dorigo et al. [16][17] and Fish Swarm Algorithm (FSA) by 
Li et al. [18][19]. 

The bio-inspired algorithms mimics the activities of 
biological organisms. The most important examples of such 
algorithms are Artificial Immune algorithm (AI) [20][21] and 
Bacterial Foraging Optimization algorithm (BFO) [22]–[24]. 
Some of the other nature inspired meta-heuristic algorithms are 
Cuckoo Search Algorithm (CSA) [25][26], Firefly algorithm 
(FA) [27][28], Fruit Fly Optimization Algorithm (FOA) [29], 
Gravitational Search Algorithm (GSA) [30][31], Imperialis t  
Competitive Algorithm  (ICA) [32][33], Antlion Optimizer 
(ALO) [34][35], Dragonfly Optimization Algorithm (DOA) 
[36][37], Whale Optimization Algorithm (WOA) [38]. 

Gray Wolf Optimization (GWO) algorithm which was 
proposed by Mirjalili in 2014, imitates the hunting strategy and 
social leadership of gray wolves [39]. In this algorithm, gray 
wolves are classified into four levels according to the social 
hierarchy: alpha, beta, delta, and omega wolves. For example, 
an alpha wolf is a leader of wolf group, omega wolves are the 
grey wolves at the lowest level. In addition to the social 
leadership mechanism, gray wolf hunting strategy is another 
interesting mechanism of GWO algorithm. Although GW O 
algorithm is a new meta-heuristic algorithm, the studies about 
improvement and application on GWO can be found in the 
literature. Some of the studies are : a modified GWO algorithm 
based on complex-valued encoding [40], chaotic maps based 
GWO algorithm [41], a Levy flight-based GWO algorithm [42], 
optimal control of dc motor using GWO algorithm [43], hybrid 
maximum power point tracking (MPPT) algorithm with GW O 
algorithm [44], modified discrete grey wolf optimizer algorithm 
(MDGWO) for multilevel image thresholding [45]. 

Robot path planning problem for a mobile robot has been 
popular especially in the last decades and many approaches 
have been proposed for a robot in an area with a set of fixed  
obstacles. In this problem, main objective is to find collision-
free trajectories for robots. Mobil robot should reach the target 
location as fast as possible and as short as possible distance 
between start and target locations [46]–[48]. The problem of 
path planning consists of the start point of the robot, the desired 
target point, the geometric description of the zone including the 
positions of the obstacles and boundaries of the zone.  

In this study, the GWO algorithm is proposed to find the 
most suitable path from the starting point to the target point 
without touching any obstacle. To evaluate the performance of 
GWO algorithm, we used the zone including three circle 

Robot Path Planning using Gray Wolf Optimizer 
L.DOĞAN1, U. YÜZGEÇ2 

1 Department of Computer Engineering, Bilecik Seyh Edebali University, Bilecik/Turkey 
lokmandogan34@gmail.com 

2 Department of Computer Engineering, Bilecik Seyh Edebali University, Bilecik/Turkey 
ugur.yuzgec@bilecik.edu.tr 

I 

International Conference on Advanced Technologies, Computer Engineering and Science (ICATCES’18), 
May 11-13, 2018 Safranbolu, Turkey

69



obstacles with different radius. GWO algorithm was compared 
with well-known meta-heuristic algorithms, such as 
Differential Evolution (DE) algorithm, Particle Swarm 
Optimization (PSO) algorithm, Artificial Bee Colony (ABC) 
algorithm and Firefly Optimization Algorithm (FOA). 

II. GRAY WOLF OPTIMIZER (GWO) 
The Gray Wolf Optimizer (GWO) is based on the behaviors 

of hunting strategy and social hierarchy of gray wolves. 
According to the hierarchy of gray wolves, there are four 
groups, namely alpha, beta, delta, and omega wolves. The 
leader or dominant wolf is called alpha and alpha wolf follows  
the other wolves in the group. The alpha is best wolf in terms 
of managing the group. The second in the social hierarchy of 
wolf group is beta wolf. Beta helps the leader wolf (alpha) in 
many activities. Delta wolf has to submit to alpha and beta 
wolves, but it adjudges the omega wolves. In this group, there 
are scouts, guards, elders, hunters, and caretakers. Omega wolf 
is gray wolf at the lowest level [39].  

 
Figure 1: The hierarchy of gray wolves. 

 
The group hunting strategy is another interesting social 

behavior of gray wolves. In this strategy of the gray wolves, 
firstly, they recognize the location of prey and encircle it under 
the leadership of the alpha wolf. In mathematical model of the 
hunting strategy of gray wolves, it is assumed that the alpha, 
beta and delta wolves provide better knowledge about the 
potential location of prey. As a result, the first three best 
solutions (alpha, beta, delta) are used to update the positions of 
wolves in GWO algorithm. There is no omega wolves in GW O 
code [39]. The mathematical model regarding hunting 
mechanism of gray wolves is given below: 

 
𝐷𝐷��⃗ 𝛼𝛼 = �𝐶𝐶𝛼𝛼 ∙ 𝑋𝑋𝛼𝛼 −𝑋𝑋𝑖𝑖 �                  (1) 
𝐷𝐷��⃗ 𝛽𝛽 = �𝐶𝐶𝛽𝛽 ∙ 𝑋𝑋𝛽𝛽 − 𝑋𝑋𝑖𝑖�                   (2) 
𝐷𝐷��⃗ 𝛿𝛿 = �𝐶𝐶𝛿𝛿 ∙ 𝑋𝑋𝛿𝛿 − 𝑋𝑋𝑖𝑖�                   (3) 
𝑈𝑈��⃗𝛼𝛼 = 𝑋𝑋𝛼𝛼 − 𝐴𝐴𝛼𝛼𝐷𝐷��⃗ 𝛼𝛼                    (4) 

𝑈𝑈��⃗𝛽𝛽 = 𝑋𝑋𝛽𝛽 − 𝐴𝐴𝛽𝛽𝐷𝐷��⃗ 𝛽𝛽                    (5) 
𝑈𝑈��⃗𝛿𝛿 = 𝑋𝑋𝛿𝛿 − 𝐴𝐴𝛿𝛿𝐷𝐷��⃗ 𝛿𝛿                    (6) 
 
𝑋𝑋𝑖𝑖 = �𝑈𝑈��⃗𝛼𝛼 + 𝑈𝑈��⃗𝛽𝛽 + 𝑈𝑈��⃗𝛿𝛿 �/3                 (7) 
 

where 𝐷𝐷��⃗ 𝛼𝛼 ,𝐷𝐷��⃗𝛽𝛽 ,𝐷𝐷��⃗ 𝛿𝛿 are distance vector between prey and wolf 
(alpha, beta, delta), 𝑋𝑋𝛼𝛼 ,𝑋𝑋𝛽𝛽 ,𝑋𝑋𝛿𝛿  indicate the position vector of the 
prey for alpha, beta, delta wolves, 𝑋𝑋𝑖𝑖 denotes the position vector 
of gray wolf at ith  iteration, 𝐶𝐶𝛼𝛼 ,𝐶𝐶𝛽𝛽 , 𝐶𝐶𝛿𝛿,𝐴𝐴𝛼𝛼 ,𝐴𝐴𝛽𝛽 ,𝐴𝐴𝛿𝛿  indicate the 
coefficient vectors of alpha, beta, delta wolves, 𝑈𝑈��⃗𝛼𝛼 ,𝑈𝑈��⃗𝛽𝛽 ,𝑈𝑈��⃗𝛿𝛿  stand 
for the trial vector for alpha, beta, delta wolves. The coefficient  
vectors for alpha, beta and delta wolves are calculated as given 
below: 
 
𝐴𝐴𝛼𝛼 = 2𝑎𝑎𝑟𝑟𝛼𝛼1 − 𝑎𝑎                       (8) 
𝐶𝐶𝛼𝛼 = 2𝑟𝑟𝛼𝛼2                      (9) 
𝐴𝐴𝛽𝛽 = 2𝑎𝑎𝑟𝑟𝛽𝛽1 − 𝑎𝑎                     (10) 
𝐶𝐶𝛽𝛽 = 2𝑟𝑟𝛽𝛽2                     (11) 
𝐴𝐴𝛿𝛿 = 2𝑎𝑎𝑟𝑟𝛿𝛿1 − 𝑎𝑎                     (12) 
𝐶𝐶𝛿𝛿 = 2𝑟𝑟𝛿𝛿2                    (13) 
 

where 𝑎𝑎 indicates the vector linearly decreased from 2 to 0 
during the optimization, 𝑟𝑟𝛼𝛼1 , 𝑟𝑟𝛽𝛽1 , 𝑟𝑟𝛿𝛿1 denote the first random 
vector in [0,1] and 𝑟𝑟𝛼𝛼2 , 𝑟𝑟𝛽𝛽2 , 𝑟𝑟𝛿𝛿2 denote the second random vector 
in [0,1].  
 

The hunting mechanism of gray wolf group is illustrated in 
Fig. 2. The members of gray wolf group update their positions 
according to the alpha, beta, delta wolves and prey. The gray 
wolves catch their prey and finish the hunt by attacking the 
prey. In mathematical model, this situation is defined as 
decreasing 𝑎𝑎 vector given below: 

 
𝑎𝑎 = 2 − 2∙𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝐼𝐼
                   (14) 

 

 
Figure 2: The hunting strategy of gray wolves. 

The pseudo code of GWO algorithm is given in Algorithm 1. 
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Algorithm 1: Pseudo code of GWO algorithm. 

Initialize the positions of gray wolves 
Calculate the cost values of gray wolves 
Save the best gray wolf as alpha wolf 
Save the second best gray wolf as beta wolf 
Save the third best gray wolf as delta wolf 
 while (iteration < maximum iteration) 
  Decrease 𝑎𝑎 using Eq. (14) 
  for each gray wolf   
     Generate the coefficient vectors for alpha, beta, delta  
     Calculate the distance vectors using Eqs. (1-3) 
     Calculate the trial vectors using Eqs. (4-6)  
     Update the position of gray wolf using Eq. (7) 
     end for 
  Calculate the cost values of updated gray wolves 
  for each gray wolf 
     if (gray wolf < alpha wolf ) 
    update alpha wolf 
     else if (gray wolf < beta wolf) 
    update beta wolf 
     else if (gray wolf < delta wolf) 
    update delta wolf 
     end if 
  end for  
  Update the elite antlion 
  increase iteration one 
 end while 
return alpha wolf 

III. ROBOT PATH PLANNING 
The robot path planning problem is a NP-hard optimization  

problem and this problem is often solved by meta-heuristic  
algorithms in the literature. The main aim in solving this 
problem is that the mobile robot should reach from the start 
point to the target position in the shortest path without touching 
any obstacles. It consists of the start and target positions, the 
size of obstacles, the shape of obstacles, the number of 
obstacles, the zone's boundaries. The objective function of path 
planning problem is given below: 

 
𝐽𝐽 = min

x,y
𝑄𝑄(1 + 𝛽𝛽𝛽𝛽)                    (15) 

 
where 𝛽𝛽 is violation coefficient (100), V indicates the 

violation cost, Q denotes the total distance between start and 
target points. In calculating the violation for the candidate 
solution, the following pseudo code was used. 

 
Algorithm 2: Pseudo code of violation's calculation. 

Violation ← 0   
for each obstacle 
   Calculate distance vector between the obstacle's center and path
   a ← max (1− 𝑑𝑑𝑖𝑖𝑑𝑑𝐼𝐼𝑀𝑀𝑑𝑑𝑑𝑑𝐼𝐼

𝐼𝐼𝑀𝑀𝑑𝑑𝑖𝑖𝑟𝑟𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜
, 0 ) 

   Violation ←  Violation + mean (a) 
end for 

IV. EXPERIMENTAL RESULTS  
To show the performance of GWO algorithm for path 

planning problem, we have taken an instance scenario from 
www.yarpiz.com web site [49]. In Fig. 3, this instance scenario 
is shown. There are three circle-shaped obstacles with different  
radius in a 6x6 zone. The yellow square indicates the start point 
of the mobile robot and the green square indicates the target 
point. We have solved this problem using GWO algorithm and 
its performance has been compared with the several well-
known meta-heuristic algorithms, such as Differential 
Evolution (DE) algorithm, Particle Swarm Optimization (PSO) 
algorithm, Artificial Bee Colony (ABC) algorithm and Firefly  
Optimization Algorithm (FOA). 

 
Figure 3: Path planning problem used in this study. 

 
 The codes of GWO and other meta-heuristic algorithms  

have been run on PC with Intel(R) Core(TM) i5-3230M 
CPU@2.60GHz RAM/8. Population size is 50, maximu m 
number of iterations is 1000. The parameters of meta-heuristic  
algorithms used for robot path planning problem are 
summarized in Table 1. Fig.4 shows the best path planning 
solution obtained at the end of one-time run by the GWO and 
other meta-heuristic algorithms. As can be seen from this 
figure, the results of all algorithms are quite close together.  

Table 1: Parameters of meta-heuristic algorithms. 

Algorithm Parameters 
DE Lower Bound of Scaling Factor : 0.5 

Upper Bound of Scaling Factor : 1.0 
Crossover Probability : 0.7 
Strategy : rand2bin 

PSO Inertia Weight : 1.0 
Inertia Weight Damping Ratio : 0.99 
Personal Learning Coefficient : 1.5 
Global Learning Coefficient : 2.0 

ABC Number of Onlooker Bees : 50 
Abandonment Limit Parameter : 
round(0.6*NumberOfVar*PopSize) 

FOA Light Absorption Coefficient : 1.0 
Initial Attraction Coefficient: 2.0 
Mutation Coefficient : 0.2 
Mutation Coefficient Damping R. : 0.98 

GWO Number of Antlions : 50 
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(a) (b) 

(c) (d) 

(e) 

Figure 4: The best solutions obtained by meta-heuristic algorithms, (a) DE, (b) PSO, (c) ABC, (d) FOA, (e) GWO. 

The cost value of GWO algorithm is found as 7.652. Fig. 5 
shows all solutions of the path planning problem obtained by 
GWO algorithm. According to this figure, GWO algorithm 
deals with finding the suitable path with the minimum distance 
between start and target locations during optimization. 
Moreover, the paths found by the best current solution at each 
iteration have very little violation. The convergence curves of 
GWO and the other algorithms are shown in Fig.6. This figure 
show that the performance of GWO provides the competitive 

result and it can be an alternative algorithm for path planning. 

V. CONCLUSION 
In this study, robot path planning problem was discussed and 

GWO algorithm was proposed for solving this problem. To 
evaluate the algorithm's performance on solving path planning 
problem, four well-known meta-heuristic algorithms (DE, PSO, 
ABC and FOA) were used. The comparison results show that 
the proposed GWO algorithm is able to provide very 
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competitive results. In future, we will add opposition learning 
to the GWO algorithm to increase its performance. 

Figure 5: Solutions of path planning problem using GWO 
algorithm for all iterations. 

Figure 6: Comparison results of GWO and other meta-heuristic 
algorithms for robot path planning problem. 
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